![]() METHOD FOR MECANO-CHEMICAL POLISHING, CORRESPONDING POLISHING PAD AND METHOD OF PRODUCING THE SAME
专利摘要:
The invention relates to a chemical mechanical polishing process comprising: providing a substrate, wherein the substrate comprises a silicon oxide and a silicon nitride; providing a polishing slurry; providing a polishing pad comprising: a polishing layer having a composition that is an ingredient reaction product comprising: a polyfunctional isocyanate and an amine initiated polyol curing agent; wherein the stoichiometric ratio of the amine-initiated polyol curing agent to the polyfunctional isocyanate is selected to control the selectivity by the removal rates of the polishing layer; creating a dynamic contact between the polishing surface and the substrate; distributing the polishing slurry on the polishing pad at or near the interface between the polishing surface and the substrate; and removing at least a certain amount of the silicon oxide and silicon nitride from the substrate, and its production method. 公开号:FR3043001A1 申请号:FR1660475 申请日:2016-10-28 公开日:2017-05-05 发明作者:Bainian Qian;Yi Guo;Marty W Degroot;George C Jacob 申请人:Rohm and Haas Electronic Materials CMP Holdings Inc;Dow Global Technologies LLC; IPC主号:
专利说明:
[0029] De préférence, dans le procédé de polissage mécano-chimique d'un substrat de la présente invention, le tampon de polissage mécano-chimique fourni comprend: une couche de polissage ayant une composition, une surface de polissage et une sélectivité par les vitesses de retrait entre un matériau de type oxyde de silicium et un matériau de type nitrure de silicium, où la composition est un produit de réaction d'ingrédients comprenant: (a) un isocyanate polyfonctionnel ayant une moyenne d'au moins deux groupes isocyanate (NCO) qui n'ont pas réagi par molécule; (b) un agent de durcissement de type polyol initié par une amine, où l'agent de durcissement de type polyol initié par une amine contient au moins un atome d'azote par molécule et où l'agent de durcissement de type polyol initié par une amine a une moyenne d'au moins trois groupes hydroxyle par molécule; et (c) une pluralité de microéléments. [0030] De préférence, la pluralité de microéléments est choisie parmi les bulles de gaz piégées, les matériaux polymériques à noyau creux, par exemple des matériaux polymériques à noyau creux rempli de gaz ou des matériaux polymériques à noyau creux rempli de liquide, les matériaux solubles dans l'eau et un matériau en phase insoluble (par exemple une huile minérale). De préférence encore, la pluralité de microéléments est choisie parmi les bulles de gaz piégées et les matériaux polymériques à noyau creux. De préférence, la pluralité de microéléments a un diamètre moyen en poids inférieur à 150 pm (de préférence encore inférieur à 50 pm; de manière particulièrement préférable de 10 à 50 pm). De préférence, la pluralité de microéléments comprend des microballons polymériques avec des parois d'enveloppe en polyacrylonitrile ou en un copolymère de polyacrylonitrile (par exemple Expancel® de Akzo Nobel). De préférence, la pluralité de microéléments (par exemple, matériaux polymériques à noyau creux rempli de gaz) est incorporée dans la composition de couche de polissage à raison de 0 à 35 vol%, de préférence encore de 10 à 25 vol%, c'est-à-dire à une porosité de 0 à 35 vol%, de préférence encore à une porosité de 10 à 25 vol%. De préférence, la pluralité de microéléments est distribuée dans toute la composition de couche de polissage. [0031] De préférence, dans le procédé de polissage mécano-chimique d'un substrat de la présente invention, le tampon de polissage mécano-chimique fourni comprend: une couche de polissage ayant une composition, une surface de polissage et une sélectivité par les vitesses de retrait entre un matériau de type oxyde de silicium et un matériau de type nitrure de silicium, où la composition est un produit de réaction d'ingrédients comprenant: (a) un isocyanate polyfonctionnel ayant une moyenne d'au moins deux groupes isocyanate (NCO) qui n'ont pas réagi par molécule; (b) un agent de durcissement de type polyol initié par une amine, où l'agent de durcissement de type polyol initié par une amine contient au moins un atome d'azote par molécule et où l'agent de durcissement de type polyol initié par une amine a une moyenne d'au moins trois groupes hydroxyle par molécule; et (c) éventuellement, une pluralité de microéléments; où le rapport stoechiométrique des groupes à hydrogène réactif dans l'agent de durcissement de type polyol initié par une amine de (b) aux au moins deux groupes isocyanate qui n'ont pas réagi dans l'isocyanate polyfonctionnel de (a) est choisi pour régler la sélectivité par les vitesses de retrait de la couche de polissage. De préférence, le rapport stoechiométrique des groupes à hydrogène réactif dans l'agent de durcissement de type polyol initié par une amine de (b) aux au moins deux groupes isocyanate qui n'ont pas réagi dans l'isocyanate polyfonctionnel de (a) qui est choisi est 1,25 à 1,8. De préférence encore, le rapport stoechiométrique des groupes à hydrogène réactif dans l'agent de durcissement de type polyol initié par une amine de (b) aux au moins deux groupes isocyanate qui n'ont pas réagi dans l'isocyanate polyfonctionnel de (a) qui est choisi est 1,3 à 1,8 (de préférence encore; 1,40 à 1,8; de manière particulièrement préférable, 1,45 à 1,75). [0032] De préférence, dans le procédé de polissage mécano-chimique d’un substrat de la présente invention, le tampon de polissage mécano-chimique fourni comprend: une couche de polissage ayant une composition, une surface de polissage et une sélectivité par les vitesses de retrait entre un matériau de type oxyde de silicium et un matériau de type nitrure de silicium; où la surface de polissage est adaptée pour polir le substrat. [0033] De préférence, la surface de polissage est adaptée pour polir le substrat en conférant à la surface de polissage une macrotexture. De préférence encore, la surface de polissage est adaptée pour polir le substrat en conférant à la surface de polissage une macrotexture, où la macrotexture est choisie dans le groupe comprenant au moins une macrotexture parmi les perforations et les rainures. Les perforations peuvent s'étendre depuis la surface de polissage sur tout ou partie de l'épaisseur de la couche de polissage. De préférence, les rainures sont disposées sur la surface de polissage de telle sorte que, lors de la rotation du tampon de polissage mécano-chimique pendant le polissage, au moins une rainure balaie la surface du substrat qui est poli. De préférence, la surface de polissage a une macrotexture incluant au moins une rainure choisie dans le groupe consistant en les rainures incurvées, les rainures linéaires et leurs combinaisons. [0034] De préférence, la surface de polissage est adaptée pour polir le substrat en conférant à la surface de polissage une macrotexture, où la macrotexture comprend un motif de rainures formé dans la couche de polissage au niveau de la surface de polissage. De préférence, le motif de rainures comprend une pluralité de rainures. De préférence encore, le motif de rainures est choisi dans une configuration de rainures. De préférence, la configuration de rainures est choisie dans le groupe consistant en les rainures concentriques (qui peuvent être circulaires ou en spirale), les rainures incurvées, les rainures croisées (par exemple disposées sous forme d'une grille X-Y sur la surface du tampon), d'autres configurations régulières (par exemple hexagones, triangles), les motifs de type bande de roulement de pneumatique, les configurations irrégulières (par exemple motifs de fractales), et leurs combinaisons. De préférence encore, la configuration de rainures est choisie dans le groupe consistant en les rainures aléatoires, les rainures concentriques, les rainures en spirale, les rainures croisées, les rainures en grille X-Y, les rainures hexagonales, les rainures triangulaires, les rainures de type fractales et leurs combinaisons. De manière particulièrement préférable, la surface de polissage a un motif de rainures en spirale formé dans celle-ci. Le profil des rainures est de préférence choisi parmi les profils rectangulaires avec des parois latérales rectilignes, ou bien la section droite des rainures peut être en forme de "V", en forme de "U", en dents de scie, et leurs combinaisons. [0035] De préférence, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention a une couche de polissage qui a une épaisseur moyenne de 0,51 à 3,81 mm (20 à 150 mils; 1 mil = 10'3 pouce = 0,0254 mm) (de préférence encore de 0,76 à 3,17 mm (30 à 125 mils); de manière particulièrement préférable de 1,02 à 3,05 mm (40 à 120 mils). [0036] Le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention a une couche de polissage qui peut être fournie dans des configurations poreuses et non poreuses (c'est-à-dire non chargées). De préférence, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention a une couche de polissage qui a une masse volumique > 0,6 g/cm3 telle qu'elle est mesurée selon ASTM D1622. De préférence encore, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention a une couche de polissage qui a une masse volumique de 0,7 à 1,1 g/cm3 (de préférence encore, de 0,75 à 1,0 g/cm3; de manière particulièrement préférable, de 0,75 à 0,95 g/cm3) telle qu'elle est mesurée selon ASTM D1622. [0037] De préférence, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention a une couche de polissage qui a une dureté Shore D de 10 à 60 telle qu'elle est mesurée selon ASTM D2240. De préférence encore, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention a une couche de polissage qui a une dureté Shore D de 15 à 50 (de manière particulièrement préférable de 20 à 40) telle qu'elle est mesurée selon ASTM D2240. [0038] De préférence, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention a une couche de polissage qui a un allongement à la rupture de 100 à 500% (de préférence encore, de 200 à 450%; de manière particulièrement préférable, de 300 à 400%) tel qu'il est mesuré selon ASTM D412. [0039] De préférence, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention a une couche de polissage qui a une ténacité de 10 à 50 MPa (de préférence encore, de 15 à 40 MPa; de manière particulièrement préférable, de 20 à 30 MPa) telle qu'elle est mesurée selon ASTM D1708-10. [0040] De préférence, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention a une couche de polissage qui a une résistance à la traction de 5 à 35 MPa (de préférence encore, de 7,5 à 20 MPa; de manière particulièrement préférable, de 10 à 15 MPa) telle qu'elle est mesurée selon ASTM D1708-10. [0041] De préférence, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention est adapté pour former une interface avec le plateau d'une machine de polissage. De préférence encore, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention est adapté pour être fixé au plateau d'une machine de polissage. De manière particulièrement préférable, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention est conçu pour être fixé au plateau à l'aide d'au moins un moyen parmi un adhésif sensible à la pression et le vide. De préférence, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention comprend en outre un adhésif de plateau, où l'adhésif de plateau est disposé sur un côté du tampon de polissage mécano-chimique opposé à la surface de polissage. [0042] De préférence, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention comprend en outre au moins une couche supplémentaire formant une interface avec la couche de polissage. De préférence, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention comprend en outre une couche de base compressible amenée à adhérer à la couche de polissage. La couche de base compressible améliore de préférence la conformité de la couche de polissage avec la surface du substrat qui est polie. De préférence, la couche de base compressible est amenée à adhérer à la couche de polissage via un adhésif d'empilement disposé entre la couche de base compressible et la couche de polissage. De préférence, l'adhésif d'empilement est choisi dans le groupe consistant en un adhésif sensible à la pression, un adhésif thermofusible, un adhésif par contact et leurs combinaisons. De préférence encore, l'adhésif d'empilement est choisi dans le groupe consistant en un adhésif sensible à la pression est un adhésif thermofusible. De manière particulièrement préférable, l'adhésif d'empilement est un adhésif thermofusible réactif. [0043] Une étape importante dans les opérations de polissage de substrats est la détermination d'un point final du procédé. Un procédé in situ populaire pour la détection du point final comprend le fait de munir un tampon de polissage d'une fenêtre qui est transparente pour des longueurs d'onde de lumière choisies. Pendant le polissage, un faisceau lumineux est dirigé à travers la fenêtre vers la surface de la galette, où il est réfléchi et traverse la fenêtre dans l'autre sens pour parvenir à un détecteur (par exemple un spectrophotomètre). Sur la base du signal de retour, les propriétés de la surface du substrat (par exemple l'épaisseur des films qui s'y trouvent) peuvent être déterminées pour la détection du point final. Pour faciliter de tels procédés de détection du point final basés sur la lumière, le tampon de polissage mécano-chimique fourni dans le procédé de la présente invention comprend éventuellement en outre une fenêtre de détection de point final. De préférence, la fenêtre de détection de point final est choisie parmi une fenêtre intégrée incorporée dans la couche de polissage; et un bloc de fenêtre de détection de point final mis en place incorporé dans le tampon de polissage mécano-chimique fourni. [0044] De préférence, le procédé de polissage mécano-chimique d'un substrat de la présente invention comprend en outre: la fourniture d'une machine de polissage ayant un plateau rotatif, une tête rotative et un conditionneur rotatif; où la couche de polissage est montée sur le plateau rotatif; où le substrat est fixé à la tête rotative; où le plateau rotatif est entraîné en rotation à une vitesse de plateau de 93 tours par minute; où la tête rotative est entraînée en rotation à une vitesse de tête de 87 tours par minute; où le substrat est pressé contre la surface de polissage de la couche de polissage avec une force d'appui de 20685 Pa (3 psi); où la suspension de polissage est fournie à la surface de polissage à un débit de 200 mL/min. [0045] De préférence, le procédé de polissage mécano-chimique d'un substrat de la présente invention comprend en outre: la fourniture d'une machine de polissage ayant un plateau rotatif, une tête rotative et un conditionneur rotatif; où la couche de polissage est montée sur le plateau rotatif; où le substrat est fixé à la tête rotative; où le plateau rotatif est entraîné en rotation à une vitesse de plateau de 93 tours par minute; où la tête rotative est entraînée en rotation à une vitesse de tête de 87 tours par minute; où le substrat est pressé contre la surface de polissage de la couche de polissage avec une force d'appui de 20685 Pa (3 psi); où la suspension de polissage est fournie à la surface de polissage à un débit de 200 mL/min; où le conditionneur rotatif est un disque abrasif diamanté; où la surface de polissage est abrasée au moyen du conditionneur rotatif; où le conditionneur rotatif est pressé contre la surface de polissage avec une force de conditionneur de 3,18 kg (7 Ibs) perpendiculairement à la surface de polissage. [0046] De préférence, ie procédé de production d'une couche de polissage pour un tampon de polissage mécano-chimique de la présente invention comprend: la fourniture (a) d'un isocyanate polyfonctionnel ayant une moyenne d'au moins deux groupes isocyanate qui n'ont pas réagi par molécule (de préférence, où le prépoiymère d'uréthane terminé par un isocyanate est un produit de réaction d'ingrédients comprenant: (i) un isocyanate polyfonctionnel aliphatique et (ii) un polyol prépolymère; de préférence, où l'isocyanate polyfonctionnel fourni est un prépolymère d'uréthane terminé par un isocyanate ayant 5,5 à 11,5 % en poids (de préférence, 6 à 11 % en poids; de préférence encore, 7 à 10,5 % en poids; de manière particulièrement préférable, 7,25 à 10,5 % en poids) de groupes isocyanate (NCO) qui n'ont pas réagi); et la fourniture (b) d'un agent de durcissement de type polyol initié par une amine, où l'agent de durcissement de type polyol initié par une amine contient au moins un atome d'azote par molécule et où l'agent de durcissement de type polyol initié par une amine a une moyenne d'au moins trois groupes hydroxyle par molécule; la combinaison de l'isocyanate polyfonctionnel et de l'agent de durcissement de type polyol initié par une amine pour former une combinaison; où le rapport stoechiométrique des groupes à hydrogène réactif (c'est à dire la somme des groupes amine (NH2) et des groupes hydroxyle (OH)) dans l'agent de durcissement de type polyol initié par une amine aux au moins deux groupes isocyanate (NCO) qui n'ont pas réagi dans l'isocyanate polyfonctionnel dans la combinaison est 1,25 à 1,8 (de préférence, 1,3 à 1,8; de préférence encore; 1,40 à 1,8; de manière particulièrement préférable, 1,45 à 1,75); et où le rapport stoechiométrique des groupes à hydrogène réactif dans l'agent de durcissement de type polyol initié par une amine de (b) aux au moins deux groupes isocyanate (NCO) qui n'ont pas réagi dans l'isocyanate polyfonctionnel de (a) dans la combinaison est choisi pour régler une sélectivité par les vitesses de retrait du dioxyde de silicium au nitrure de silicium de la couche de polissage. [0047] Certains modes de réalisation de la présente invention vont maintenant être décrits en détail dans les exemples suivants. Exemple comparatif Cl et exemples 1-3 [0048] Des couches de polissage ont été préparées selon les détails de formulation fournis dans le tableau 2. Spécifiquement, des gâteaux de polyuréthane ont été préparés par mélange contrôlé du prépolymère d'uréthane terminé par un isocyanate à 51°C pour Adiprene® LFG963A pour l'exemple comparatif Cl; et à 65°C pour Adiprene® LW570 pour les exemples 1-3; l'un et l'autre étant disponibles auprès de Chemtura Corporation, avec l'agent de durcissement indiqué dans le tableau 2. La MBOCA (4,4'-méthylènebis(2-chloroaniline) a été maintenue à une température de prémélange de 116°C. Le rapport du prépolymère d'uréthane terminé par un isocyanate et de l'agent de durcissement a été fixé de telle manière que la stœchiométrie, telle qu'elle est définie par le rapport des groupes à hydrogène réactif (c'est-à-dire la somme des groupes -OH et des groupes -NH2) dans l'agent de durcissement aux groupes isocyanate (NCO) qui n'ont pas réagi dans le prépolymère d'uréthane terminé par un isocyanate, était telle qu'indiquée dans le tableau 2. [0049] Une porosité a été introduite dans les couches de polissage par addition de microsphères de Expancel® au prépolymère d'uréthane terminé par un isocyanate avant sa combinaison avec l'agent de durcissement pour obtenir la porosité souhaitée et la masse volumique souhaitée pour les couches de polissage. [0050] Le prépolymère d'uréthane terminé par un isocyanate avec les microsphères de Expancel® incorporées et l'agent de durcissement ont été mélangés avec une tête mélangeuse à haut cisaillement. Après avoir quitté la tête mélangeuse, la combinaison a été distribuée sur une période de 5 minutes dans un moule circulaire d'un diamètre de 86,4 cm (34 pouces) pour donner une épaisseur de déversement totale d'approximativement 10 cm (4 pouces). La combinaison distribuée a été mise à gélifier pendant 15 minutes avant que le moule soit placé dans une étuve de durcissement. Le moule a ensuite été durci dans l’étuve de durcissement au moyen du cycle suivant: montée de 30 minutes de la température ambiante à un point fixé de 104°C, puis maintien pendant 15,5 heures à 104°C, puis descente pendant 2 heures de 104°C à 21°C. [0051] Les gâteaux de polyuréthane durcis ont ensuite été retirés du moule et tranchés (coupés au moyen d'une lame mobile) à une température de 30 à 80°C en feuilles épaisses de 2,0 mm (80 mils). Le tranchage a été initié depuis le sommet de chaque gâteau. Toutes les feuilles incomplètes ont été jetées. [0052] Les matériaux de couche de polissage non rainurés provenant de l'exemple comparatif Cl et des exemples 1-3 ont été analysés pour déterminer leurs propriétés physiques comme indiqué dans les tableaux 2 et 3. On notera que les données concernant la masse volumique indiquées ont été déterminées selon ASTM D1622; que les données concernant la dureté Shore D indiquées ont été déterminées selon ASTM D2240; et que les données concernant l'allongement à la rupture indiquées ont été déterminées selon ASTM D412. TABLEAU 2 TABLEAU 3 Expériences de polissage [0053] Des tampons de polissage mécano-chimique ont été construits au moyen de couches de polissage préparées selon l'exemple comparatif Cl et les exemples 1-3. Les couches de polissage ont été ralnurées chacune à la machine pour produire un motif de rainures dans la surface de polissage comprenant une pluralité de rainures circulaires concentriques ayant des dimensions de pas de 1,78 mm (70 mils), largeur de 0,51 mm (20 mils) et profondeur de 0,76 mm (30 mils). Les couches de polissage ont ensuite été stratifiées à une couche de sous-tampon non tissée recouverte de polymère (couches de sous-tampon Suba IV disponibles auprès de Rohm et Haas Electronic Materials CMP Inc.). [0054] Une suspension de polissage comprenant 1 % en poids d’abrasif de type silice (disponible auprès de Fuso Chemical Co., Ltd.), ayant une positive charge mesurée au pH de polissage noté dans le tableau 4 ci-dessous, et de l'eau désionisée a été fournie. [0055] Un polisseur de galettes Strasbaugh 6EC a été utilisé pour polir des galettes de couverture en oxyde de silicium et nitrure de silicium de 200 mm disponibles auprès de Novellus Systems, Inc. avec les tampons de polissage mécano-chimique indiqués. Les conditions de polissage utilisées dans toutes les expériences de polissage incluaient une vitesse du plateau de 93 tr/min; une vitesse du support de 87 tr/min; avec un débit de suspension de polissage de 200 mL/min et une force d'appui de 20,7 kPa. Un disque de conditionnement diamanté Kinik CG181060 (disponible dans le commerce auprès de Kinik Company) a été utilisé pour conditionner les tampons de polissage mécano-chimique. Les tampons de polissage mécano-chimique ont été rodés chacun avec le conditionneur ex situ avec une force d'appui de 3,18 kg (7 Ibs) pendant 40 minutes. Les tampons de polissage ont été conditionnés encore in situ pendant le polissage avec une force d'appui de 3,18 kg (7 Ibs). Les vitesses de retrait ont été déterminées en mesurant l'épaisseur de film avant et après le polissage au moyen d'un outil de métrologie KLA-Tencor FX200 en utilisant un balayage en spirale à 49 points avec une exclusion de bord de 3 mm. Les résultats des expériences sur les vitesses de retrait sont présentés dans le tableau 4. TABLEAU 4 BACKGROUND The present invention relates to a chemical mechanical polishing process. More particularly, the present invention relates to a chemical mechanical polishing process comprising: providing a substrate, wherein the substrate comprises a silicon oxide and a silicon nitride; providing a polishing slurry; providing a polishing pad comprising: a polishing layer having a composition that is an ingredient reaction product comprising: a polyfunctional isocyanate and an amine initiated polyol curing agent; wherein the stoichiometric ratio of the amine-initiated polyol curing agent to the polyfunctional isocyanate is selected to control the selectivity by the removal rates of the polishing layer; creating a dynamic contact between the polishing surface and the substrate; distributing the polishing slurry on the polishing pad at or near the interface between the polishing surface and the substrate; and removing at least a certain amount of the silicon oxide and silicon nitride from the substrate. In the manufacture of integrated circuits and other electronic devices, multiple layers of conductive, semiconductor and dielectric materials are deposited on and removed from a surface of a semiconductor wafer. Thin layers of conductive, semiconductor and dielectric materials can be deposited by a number of deposition techniques. Common deposition techniques in modern wafer processing include physical vapor deposition (PVD), also known as cathodic sputtering, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (CVD) PECVD) and electrochemical plating, among others. Common removal techniques include wet and dry isotropic and anisotropic etching, among others. When layers of materials are successively deposited and removed, the upper surface of the wafer becomes non-planar. Since the subsequent processing of semiconductors (eg metallization) requires the wafer to have a flat surface, the wafer must be planarized. Planarization is useful for removing undesirable surface topography and surface defects, such as rough surfaces, agglomerated materials, crystal lattice damage, scrapes and contaminated layers or contaminated materials. [0004] Mechano-chemical planarization, or chemical mechanical polishing (CMP), is a common technique used to planarize or polish parts, such as semiconductor wafers. In the conventional CMP, a wafer carrier, or polishing head, is mounted on a support assembly. The polishing head holds the wafer and positions the wafer in contact with a polishing layer of a polishing pad which is mounted on a table or tray in a CMP apparatus. The support assembly applies an adjustable pressure between the wafer and the polishing pad. At the same time, a polishing medium (e.g. "slurry") is dispensed onto the polishing pad and is drawn into the gap between the wafer and the polishing layer. To polish, the polishing pad and wafer typically rotate relative to each other. When the polishing pad rotates under the wafer, the wafer typically describes an annular polishing path, or polishing region, in which the surface of the wafer is directly in front of the polishing layer. The surface of the wafer is polished and made flat by the chemical and mechanical action of the polishing layer and the polishing medium on the surface. The devices are becoming more complex with finer elements. This trend requires improved performance from polishing consumables to provide adjustable selectivities between the materials used to create different elements on the substrate to provide device designers with increased flexibility in these configurations. Thus, to support the dynamic domain of device configurations for use in the fabrication of semiconductor systems, there is a continuing need for chemical mechanical polishing consumables which provide a desirable balance of polishing properties to accommodate changing needs for configurations. For example, there is a continuing need for polishing consumables that exhibit selectivity by the rates of shrinkage between silicon oxide and silicon nitride. [0006] Historically, polishing consumable suppliers have focused on suspension formulations to impart selectivity through the desired shrinkage rates between different substrate materials. For example, an adjustable selectivity suspension for chemical mechanical polishing is described by Chen et al. in US Patent No. 7,294,576. Chen et al. disclose a process for mechanical-chemical polishing of a substrate, which method comprises: (a) providing a substrate with at least a first layer and a second layer, wherein the first layer and the second layer have not been contacted with a chemical mechanical polishing composition, (b) preparing a final chemical mechanical polishing composition comprising the steps of (i): providing a first mechanical-chemical polishing composition comprising an abrasive with a first selectivity for a first layer with respect to a second layer, (ii) providing a second chemical mechanical polishing composition comprising an abrasive with a second selectivity for the first layer with respect to the second layer, wherein the second composition chemical mechanical polishing is stable in the presence of the first chemical-mechanical polishing composition, and wherein the first and second selectivities are different, and (iii) mixing the first and second chemical mechanical polishing compositions in a ratio to obtain a final chemical mechanical polishing composition with a final selectivity for the first layer with respect to the second layer, (c) contacting of the substrate with the final chemical-mechanical polishing composition, (d) moving the polishing pad with respect to the substrate with the final chemical-mechanical polishing composition therebetween, and (e) abrasion of at least a portion of the first and second layers of the substrate for polishing the substrate. [0007] Nevertheless, there is a continuing need for polishing consumable offers that broaden the range of selectivities by the removal rates that are available to device designers. Thus, it would be desirable to provide chemical mechanical polishing pads having polishing layer compositions that are selected to increase the selectivity by the shrinkage rates that is available to semiconductor device designers. SUMMARY OF THE INVENTION The present invention provides a chemical mechanical polishing process of a substrate comprising: providing the substrate, wherein the substrate comprises a silicon oxide and a silicon nitride; providing a polishing slurry comprising: water; and a silica abrasive, wherein the silica abrasive has a positive surface charge measured at a polishing pH of 1 to 6; providing a chemical mechanical polishing pad comprising: a polishing layer having a composition, a polishing surface and a selectivity by the shrinkage rates between a silicon oxide material and a silicon nitride material, wherein the composition is an ingredient reaction product comprising: (a) a polyfunctional isocyanate having an average of at least two isocyanate groups (NCO) which have not reacted per molecule; (b) an amine initiated polyol curing agent, wherein the amine initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the polyol curing agent initiated by an amine has an average of at least three hydroxyl groups per molecule; and (c) optionally, a plurality of microelements; wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) is chosen to adjust the selectivity by the withdrawal rates; and wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) ) is 1.25 to 1.8; creating a dynamic contact at an interface between the polishing surface and the substrate for polishing a surface of the substrate; distributing the polishing slurry on the chemical mechanical polishing pad at or near the interface between the polishing surface and the substrate; and removing at least a certain amount of the silicon oxide and silicon nitride from the substrate. The present invention provides a chemical-mechanical polishing process of a substrate comprising: providing the substrate, wherein the substrate comprises a silicon oxide and a silicon nitride; providing a polishing machine having a turntable, a rotary head and a rotary conditioner; providing a polishing slurry comprising: water; and a silica abrasive, wherein the silica abrasive has a positive surface charge measured at a polishing pH of 1 to 6; providing a chemical mechanical polishing pad comprising: a polishing layer having a composition, a polishing surface and a selectivity by the shrinkage rates between a silicon oxide material and a silicon nitride material, wherein the composition is an ingredient reaction product comprising: (a) a polyfunctional isocyanate having an average of at least two isocyanate groups (NCO) which have not reacted per molecule; (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the polyol curing agent initiated by an amine has an average of at least three hydroxyl groups per molecule; and (c) optionally, a plurality of microelements; wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) is chosen to adjust the selectivity by the withdrawal rates; and wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) ) is 1.25 to 1.8; where the polishing layer is mounted on the turntable; where the substrate is attached to the rotating head; creating a dynamic contact at an interface between the polishing surface and the substrate for polishing a surface of the substrate; where the turntable is rotated at a plateau speed of 93 rpm; wherein the rotating head is rotated at a top speed of 87 rpm; wherein the substrate is pressed against the polishing surface of the polishing layer with a bearing force of 20685 Pa (3 psi); distributing the polishing slurry on the chemical mechanical polishing pad at or near the interface between the polishing surface and the substrate; where the polishing slurry is supplied to the polishing surface at a flow rate of 200 mL / min; and removing at least a certain amount of the silicon oxide and silicon nitride from the substrate. The present invention provides a chemical mechanical polishing pad comprising: a polishing layer having a composition, a polishing surface and a selectivity by the shrinkage rates between a silicon oxide material and a nitride material silicon; wherein the composition is an ingredient reaction product comprising: (a) a polyfunctional isocyanate having an average of at least two isocyanate groups (NCO) which have not reacted per molecule; and (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the initiated polyol curing agent an amine has an average of at least three hydroxyl groups per molecule; wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) is 1.25 to 1.8; and wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) ) is selected to adjust the selectivity by the withdrawal rates. Preferably, the chemical-mechanical polishing pad provided further comprises: a sub-pad having a top surface and a bottom surface, wherein the top surface forms an interface with the polishing layer on one side of the polishing layer opposite to the polishing surface; and a pressure-sensitive tray adhesive, wherein the pressure-sensitive tray adhesive is disposed on the lower surface of the sub-pad. The present invention provides a method for producing a polishing layer for a chemical mechanical polishing pad comprising: providing (a) a polyfunctional isocyanate having an average of at least two isocyanate groups (NCO) who have not reacted per molecule; and providing (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the curing agent an amine-initiated polyol type has an average of at least three hydroxyl groups per molecule; combining the polyfunctional isocyanate and the amine-initiated polyol curing agent to form a combination; wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate in the combination is 1.25 to 1.8; and wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) ) in the combination is chosen to adjust a selectivity by the silicon nitride silicon dioxide removal rates of the polishing layer. DETAILED DESCRIPTION It has surprisingly been found that the selectivity by the shrinkage rates between a silicon oxide type material and a silicon nitride material for a polishing layer in a chemical mechanical polishing pad provided in the method. of the present invention can be finely tuned by the judicious choice, in the raw materials used to produce the polishing layer composition, of the stoichiometric ratio of the reactive hydrogen groups (i.e. the sum of the amine groups (NH 2 ) and hydroxyl (OH) groups in the unreacted isocyanate curing agent (NCO) in the polyfunctional isocyanate in the range of 1.25 to 1.8. As semiconductor substrates continue to develop with increasing complexity, the desired range of polishing selectivities required for their manufacture imposes selectivities by the multiple shrinkage rates between different materials on the substrate surface during a polishing operation. given. The possibility of adjusting the shrinkage speeds provided by the present invention provides another tool to achieve increased selectivity performance by shrinkage rates to enable the fabrication of even more complex substrates. The chemical mechanical polishing process of a substrate of the present invention comprises: providing the substrate, wherein the substrate comprises a silicon oxide and a silicon nitride; providing a polishing slurry comprising: water; and a silica abrasive (preferably 0.1 to 6% by weight of silica abrasive, more preferably 0.5 to 5% by weight of silica abrasive, particularly preferably 75 to 2% by weight of silica abrasive), wherein the silica abrasive has a positive surface charge measured at a polishing pH of 1 to 6 (preferably 2 to 5, more preferably 2.5 to 5, particularly preferably 2.75 to 4.75); providing a chemical mechanical polishing pad comprising: a polishing layer having a composition, a polishing surface and a selectivity by the shrinkage rates between a silicon oxide material and a silicon nitride material, wherein the composition is an ingredient reaction product comprising: (a) a polyfunctional isocyanate having an average of at least two isocyanate groups (NCO) which have not reacted per molecule; (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the polyol curing agent initiated by an amine has an average of at least three hydroxyl groups per molecule; and (c) optionally, a plurality of microelements; wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two unreacted isocyanate groups in the polyfunctional isocyanate of (a) is selected to adjust the selectivity by the withdrawal rates; and wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two unreacted isocyanate groups in the polyfunctional isocyanate of (a) is 1 25 to 1.8 (preferably 1.3 to 1.8, more preferably 1.40 to 1.8, particularly preferably 1.45 to 1.75); creating a dynamic contact at an interface between the polishing surface and the substrate for polishing a surface of the substrate; distributing the polishing slurry on the chemical mechanical polishing pad at or near the interface between the polishing surface and the substrate; and removing at least a certain amount of the silicon oxide and silicon nitride from the substrate. [0014] Preferably, in the chemical mechanical polishing process of a substrate of the present invention, the substrate provided comprises a silicon oxide and a silicon nitride. More preferably, in the chemical-mechanical polishing process of a substrate of the present invention, the substrate provided is a semiconductor substrate comprising a silicon oxide and a silicon nitride. Particularly preferably, in the chemical-mechanical polishing process of a substrate of the present invention, the substrate provided is a semiconductor substrate comprising at least one silicon oxide element and at least one silicon nitride element; wherein the at least one silicon oxide element and the at least one silicon nitride element are exposed to the polishing surface and the polishing slurry during chemical mechanical polishing; and wherein at least a certain amount of the at least one silicon oxide element and the at least one silicon nitride element is removed from the substrate. [0015] Preferably, in the chemical mechanical polishing process of a substrate of the present invention, the polishing slurry provided comprises: water and a silica-type abrasive; wherein the silica abrasive has a positive surface charge measured at a polishing pH of from 1 to 6 (preferably from 2 to 5, more preferably from 2.5 to 5, particularly preferably from 2.75 to at 4.75). More preferably, in the chemical mechanical polishing process of a substrate of the present invention, the polishing slurry provided comprises: water; and 0.1 to 6% by weight of a silica abrasive; wherein the silica abrasive has a positive surface charge measured at a polishing pH of from 1 to 6 (preferably from 2 to 5, more preferably from 2.5 to 5, particularly preferably from 2.75 to at 4.75). More preferably, in the chemical mechanical polishing process of a substrate of the present invention, the polishing slurry provided comprises: water; and 0.5 to 5% by weight of a silica abrasive; wherein the silica abrasive has a positive surface charge measured at a polishing pH of from 1 to 6 (preferably from 2 to 5, more preferably from 2.5 to 5, particularly preferably from 2.75 to at 4.75). Particularly preferably, in the chemical mechanical polishing process of a substrate of the present invention, the polishing slurry provided comprises: water; and 0.75 to 2% by weight of a silica abrasive; wherein the silica abrasive has a positive surface charge measured at a polishing pH of from 1 to 6 (preferably from 2 to 5, more preferably from 2.5 to 5, particularly preferably from 2 to 5, , 75 to 4.75). [0016] Preferably, in the chemical mechanical polishing process of a substrate of the present invention, the water contained in the polishing suspension provided is at least one of deionized water and distilled water to limit accidental impurities. Preferably, in the chemical-mechanical polishing process of a substrate of the present invention, the silica-type abrasive contained in the polishing suspension provided is a colloidal silica type abrasive; wherein the colloidal silica abrasive has a positive surface charge measured at a polishing pH of 1 to 6 (preferably 2 to 5, more preferably 2.5 to 5, most preferably 2.75 to 4.75). More preferably, in the chemical mechanical polishing process of a substrate of the present invention, the silica abrasive contained in the polishing slurry provided is a colloidal silica type abrasive having an average particle size <100 nm as measured by dynamic light scattering techniques; wherein the colloidal silica abrasive has a positive surface charge measured at a polishing pH of 1 to 6 (preferably 2 to 5, more preferably 2.5 to 5, most preferably 2.75 to 4.75). Particularly preferably, in the chemical mechanical polishing process of a substrate of the present invention, the silica abrasive contained in the polishing slurry provided is a colloidal silica type abrasive having a mean particle size of at 100 nm (more preferably 10 to 60 nm, particularly preferably 20 to 60 nm) as measured by dynamic light scattering techniques; wherein the colloidal silica abrasive has a positive surface charge measured at a polishing pH of 1 to 6 (preferably 2 to 5, more preferably 2.5 to 5, most preferably 2.75 to 4.75). [0018] Preferably, in the chemical mechanical polishing process of a substrate of the present invention, the polishing slurry provided has a polishing pH of 1 to 6. More preferably, in the chemical mechanical polishing process In a substrate of the present invention, the polishing slurry provided has a polishing pH of 2 to 5. More preferably, in the chemical mechanical polishing process of a substrate of the present invention, the polishing slurry provided At a polishing pH of 2.5 to 5. Particularly preferably, in the chemical mechanical polishing process of a substrate of the present invention, the polishing slurry provided has a polishing pH of 2.75 to 4. 75. Preferably, in the chemical mechanical polishing process of a substrate of the present invention, the polishing slurry provided further comprises an additional additive selected from the group consisting of dispersants, surfactants, buffers, agents and the like. antifoam and biocides. The polishing layer composition of the polishing layer in the chemical mechanical polishing pad provided in the process of the present invention is the ingredient reaction product comprising: (a) a polyfunctional isocyanate having an average of at least two isocyanate groups (NCO) which have not reacted per molecule; and (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the initiated polyol curing agent an amine has an average of at least three hydroxyl groups per molecule; where the stoichiometric ratio of the reactive hydrogen groups (i.e., the sum of the amine (NH 2) and hydroxyl (OH) groups) in the amine-initiated polyol curing agent of (b) to at least two isocyanate groups which have not reacted in the polyfunctional isocyanate of (a) are chosen to adjust the selectivity by the shrinkage rates between the silicon oxide and the silicon nitride of the polishing layer; and wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two unreacted isocyanate groups in the polyfunctional isocyanate of (a) is 1 25 to 1.8 (preferably 1.3 to 1.8, more preferably 1.40 to 1.8, particularly preferably 1.45 to 1.75). By the judicious choice of the stoichiometric ratio, the selectivity by the shrinkage rates between the silicon oxide and the silicon nitride of the polishing layer can be adjusted in a range from 5 to 60. [0021] Preferably, in the chemical mechanical polishing process of a substrate of the present invention, the chemical-mechanical polishing pad provided comprises: a polishing layer having a composition, a polishing surface and a selectivity by the shrinkage rates between a silicon oxide material and a silicon nitride material, wherein the composition is an ingredient reaction product comprising: (a) a polyfunctional isocyanate having an average of at least two isocyanate groups ( NCO) which have not reacted per molecule; (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the polyol curing agent initiated by an amine has an average of at least three hydroxyl groups per molecule; and (c) optionally, a plurality of microelements. [0022] Preferably, the polyfunctional isocyanate having an average of at least two unreacted isocyanate groups (NCO) per molecule is an ingredient reaction product including: (i) a polyfunctional aliphatic isocyanate; and (ii) a prepolymer polyol. More preferably, the polyfunctional isocyanate having an average of at least two unreacted isocyanate groups (NCO) per molecule is an ingredient reaction product including: (i) a polyfunctional aliphatic isocyanate, wherein polyfunctional aliphatic isocyanate is selected from the group consisting of isophorone diisocyanate (IPDI); hexamethylene-1,6-diisocyanate (HDI); 4,4-methylenebis (cyclohexyl isocyanate) (H12MDI); 1,4-cyclohexane diisocyanate; 1,3-cyclohexane diisocyanate; 1,2-cyclohexane diisocyanate; 2,2,4-trimethylhexamethylene diisocyanate; 2,4,4-trimethylhexamethylene diisocyanate; 1,4-bis (isocyanatomethyl) cyclohexane; 1,3-bis (isocyanatomethyl) cyclohexane and mixtures thereof; and (ii) a prepolymer polyol, wherein the prepolymer polyol is selected from the group consisting of diols, polyols, polyol diols, copolymers thereof and mixtures thereof. More preferably, the polyfunctional isocyanate having an average of at least two unreacted isocyanate groups (NCO) per molecule is an ingredient reaction product including: (i) a polyfunctional aliphatic isocyanate, wherein polyfunctional aliphatic isocyanate is 4,4-methylenebis (cyclohexylisocyanate) (H12-MDI); and (ii) a prepolymer polyol, wherein the prepolymer polyol is selected from the group consisting of diols, polyols, polyol diols, copolymers thereof, and mixtures thereof. [0023] Preferably, the prepolymer polyol is chosen from the group consisting of polyether polyols (for example poly (oxytethamethylene) glycol, poly (oxypropylene) glycol, poly (oxyethylene) glycol); polycarbonate polyols; polyester polyols; polycaprolactone polyols; their mixtures; and mixtures thereof with one or more low molecular weight polyols selected from the group consisting of ethylene glycol; 1,2-propylene glycol; 1,3-propylene glycol; 1,2-butanediol; 1,3-butanediol; 2-methyl-1,3-propanediol; 1,4-butanediol; neopentyl glycol; 1,5-pentanediol; 3-methyl-1,5-pentanediol; 1,6-hexanediol; diethylene glycol; dipropylene glycol; and tripropylene glycol. More preferably, the prepolymer polyol is selected from the group consisting of at least one polyol of polytetramethylene ether glycol (PTMEG); polypropylene ether glycols (PPG), and polyethylene ether glycols (PEG); optionally mixed with at least one low molecular weight polyol selected from the group consisting of ethylene glycol; 1,2-propylene glycol; 1,3-propylene glycol; 1,2-butanediol; 1,3-butanediol; 2-methyl-1,3-propanediol; 1,4-butanediol; neopentyl glycol; 1,5-pentanediol; 3-methyl-1,5-pentanediol; 1,6-hexanediol; diethylene glycol; dipropylene glycol; and tripropylene glycol. [0024] Preferably, the polyfunctional isocyanate having an average of at least two isocyanate groups (NCO) which have not reacted per molecule is an isocyanate-terminated urethane prepolymer having 5.5 to 11.5% by weight (preferably 6 to 11% by weight, more preferably 7 to 10.5% by weight, particularly preferably 7.25 to 10.5% by weight) of isocyanate groups (NCO) which have not reacted. [0025] Preferably, the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and an average of at least three hydroxyl groups per molecule. More preferably, the amine-initiated polyol curing agent contains one to four (more preferably two to four, most preferably two) nitrogen atoms per molecule and an average of three to six (preferably still three to five, particularly preferably four) hydroxyl groups per molecule. Preferably, the amine-initiated polyol curing agent has a number average molecular weight, MN, <700. More preferably, the amine-initiated polyol curing agent used has a number average molecular weight, Mn, of from 150 to 650 (more preferably from 200 to 500, more preferably from 200 to 400 particularly preferably from 250 to 300). Preferably, the amine-initiated polyol curing agent has a hydroxyl number (as determined by the ASTM D4274-11 test method) of 350 to 1200 mg KOH / g. . More preferably, the amine-initiated polyol curing agent has a hydroxyl number of 400 to 1000 mg KOH / g (particularly preferably 600 to 850 mg KOH / g). Examples of commercially available amine initiated polyol curing agents include the Voranol family of amine initiated polyols (available from The Dow Chemical Company); Quadrol® specialty polyols (N, N, N ', N'-tetrakis (2-hydroxypropyl ethylenediamine)) (available from BASF); Pluracol® amine-based polyols (available from BASF); Multranol® amine-based polyols (available from Bayer MateriaIScience LLC); triisopropanolamine (ΉΡΑ) (available from The Dow Chemical Company); and triethanolamine (TEA) (available from Mallinckrodt Baker Inc.). A number of preferred amine-initiated polyol curing agents are shown in Table 1 below. TABLE 1 Preferably, in the chemical-mechanical polishing process of a substrate of the present invention, the chemical-mechanical polishing pad provided comprises: a polishing layer having a composition, a polishing surface and a selectivity by the shrinkage rates between a silicon oxide material and a silicon nitride material, wherein the composition is an ingredient reaction product comprising: (a) a polyfunctional isocyanate having an average of at least two isocyanate groups ( NCO) who did not react per molecule; (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the polyol curing agent initiated by an amine has an average of at least three hydroxyl groups per molecule; and (c) a plurality of microelements. Preferably, the plurality of microelements is chosen from trapped gas bubbles, hollow core polymer materials, for example hollow core polymer materials filled with gas or hollow core filled polymer materials, the materials soluble in water and a material in insoluble phase (for example a mineral oil). More preferably, the plurality of microelements is selected from entrapped gas bubbles and hollow core polymeric materials. Preferably, the plurality of microelements has a weight average diameter of less than 150 μm (more preferably less than 50 μm, particularly preferably 10 to 50 μm). Preferably, the plurality of microelements comprises polymeric microballoons with polyacrylonitrile shell walls or a polyacrylonitrile copolymer (eg Expancel® from Akzo Nobel). Preferably, the plurality of microelements (e.g. gas-filled hollow core polymeric materials) is incorporated in the polishing layer composition in an amount of 0 to 35 vol%, more preferably 10 to 25 vol%, and that is to say at a porosity of 0 to 35 vol%, more preferably at a porosity of 10 to 25 vol%. Preferably, the plurality of microelements is distributed throughout the polishing layer composition. Preferably, in the chemical-mechanical polishing process of a substrate of the present invention, the chemical-mechanical polishing pad provided comprises: a polishing layer having a composition, a polishing surface and a selectivity by the shrinkage rates between a silicon oxide material and a silicon nitride material, wherein the composition is an ingredient reaction product comprising: (a) a polyfunctional isocyanate having an average of at least two isocyanate groups ( NCO) which have not reacted per molecule; (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the polyol curing agent initiated by an amine has an average of at least three hydroxyl groups per molecule; and (c) optionally, a plurality of microelements; wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two unreacted isocyanate groups in the polyfunctional isocyanate of (a) is selected to adjust the selectivity by the removal rates of the polishing layer. Preferably, the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two unreacted isocyanate groups in the polyfunctional isocyanate of (a) which is chosen is 1.25 to 1.8. More preferably, the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two unreacted isocyanate groups in the polyfunctional isocyanate of (a) which is selected is 1.3 to 1.8 (more preferably 1.40 to 1.8, particularly preferably 1.45 to 1.75). [0032] Preferably, in the chemical mechanical polishing process of a substrate of the present invention, the chemical-mechanical polishing pad provided comprises: a polishing layer having a composition, a polishing surface and a selectivity by the shrinkage rates between a silicon oxide material and a silicon nitride material; where the polishing surface is adapted to polish the substrate. Preferably, the polishing surface is adapted to polish the substrate by imparting to the polishing surface a macrotexture. More preferably, the polishing surface is adapted to polish the substrate by imparting a macrotexture to the polishing surface, wherein the macrotexture is selected from the group consisting of at least one macrotexture among the perforations and grooves. The perforations may extend from the polishing surface over all or part of the thickness of the polishing layer. Preferably, the grooves are disposed on the polishing surface so that, upon rotation of the chemical mechanical polishing pad during polishing, at least one groove sweeps the surface of the substrate which is polished. Preferably, the polishing surface has a macrotexture including at least one groove selected from the group consisting of curved grooves, linear grooves and combinations thereof. [0034] Preferably, the polishing surface is adapted to polish the substrate by imparting a macrotexture to the polishing surface, wherein the macrotexture comprises a pattern of grooves formed in the polishing layer at the level of the polishing surface. Preferably, the groove pattern comprises a plurality of grooves. More preferably, the groove pattern is selected in a groove pattern. Preferably, the groove pattern is selected from the group consisting of concentric grooves (which may be circular or spiral), curved grooves, cross grooves (for example arranged as an XY grid on the surface of the pad ), other regular configurations (eg hexagons, triangles), tire tread type patterns, irregular patterns (eg fractal patterns), and combinations thereof. More preferably, the groove configuration is selected from the group consisting of random grooves, concentric grooves, spiral grooves, cross grooves, XY grid grooves, hexagonal grooves, triangular grooves, grooves of the type fractals and their combinations. Particularly preferably, the polishing surface has a spiral groove pattern formed therein. The profile of the grooves is preferably selected from rectangular profiles with straight side walls, or the cross section of the grooves may be "V" shaped, "U" shaped, sawtooth, and combinations thereof. [0035] Preferably, the chemical mechanical polishing pad provided in the process of the present invention has a polishing layer which has an average thickness of 0.51 to 3.81 mm (20 to 150 mils; 1 mil = 10 Inch = 0.0254 mm) (more preferably from 30 to 125 mils), particularly preferably from 1.02 to 3.05 mm (40 to 120 mils). The chemical mechanical polishing pad provided in the process of the present invention has a polishing layer that can be provided in porous and non-porous (i.e., uncharged) configurations. Preferably, the chemical mechanical polishing pad provided in the process of the present invention has a polishing layer which has a density of> 0.6 g / cm3 as measured by ASTM D1622. More preferably, the chemical mechanical polishing pad provided in the process of the present invention has a polishing layer which has a density of 0.7 to 1.1 g / cm 3 (more preferably 0.75 to 1.0 g / cm 3, particularly preferably 0.75 to 0.95 g / cm 3) as measured according to ASTM D1622. [0037] Preferably, the chemical mechanical polishing pad provided in the process of the present invention has a polishing layer which has a Shore D hardness of 10 to 60 as measured according to ASTM D2240. More preferably, the chemical mechanical polishing pad provided in the process of the present invention has a polishing layer which has a Shore D hardness of 15 to 50 (particularly preferably 20 to 40) as measured. according to ASTM D2240. [0038] Preferably, the chemical mechanical polishing pad provided in the process of the present invention has a polishing layer which has an elongation at break of 100 to 500% (more preferably, 200 to 450%; particularly preferably from 300 to 400%) as measured according to ASTM D412. [0039] Preferably, the chemical mechanical polishing pad provided in the process of the present invention has a polishing layer which has a tenacity of 10 to 50 MPa (more preferably 15 to 40 MPa; from 20 to 30 MPa) as measured according to ASTM D1708-10. [0040] Preferably, the chemical mechanical polishing pad provided in the process of the present invention has a polishing layer which has a tensile strength of 5 to 35 MPa (more preferably 7.5 to 20 MPa). particularly preferably from 10 to 15 MPa) as measured according to ASTM D1708-10. Preferably, the chemical mechanical polishing pad provided in the method of the present invention is adapted to form an interface with the tray of a polishing machine. More preferably, the chemical mechanical polishing pad provided in the process of the present invention is adapted to be attached to the tray of a polishing machine. Most preferably, the chemical mechanical polishing pad provided in the method of the present invention is adapted to be secured to the tray with at least one of a pressure sensitive adhesive and a vacuum. Preferably, the chemical-mechanical polishing pad provided in the method of the present invention further comprises a platen adhesive, wherein the platen adhesive is disposed on one side of the chemical-mechanical polishing pad opposite the polishing surface. . Preferably, the chemical mechanical polishing pad provided in the process of the present invention further comprises at least one additional layer forming an interface with the polishing layer. Preferably, the chemical mechanical polishing pad provided in the process of the present invention further comprises a compressible base layer adhered to the polishing layer. The compressible base layer preferably improves the compliance of the polishing layer with the surface of the substrate which is polished. Preferably, the compressible base layer is adhered to the polishing layer via a stacking adhesive disposed between the compressible base layer and the polishing layer. Preferably, the stacking adhesive is selected from the group consisting of pressure sensitive adhesive, hot melt adhesive, contact adhesive and combinations thereof. More preferably, the stacking adhesive is selected from the group consisting of a pressure sensitive adhesive is a hot melt adhesive. Most preferably, the stacking adhesive is a hot melt reactive adhesive. An important step in the polishing operations of substrates is the determination of an end point of the process. A popular in situ method for endpoint detection includes providing a polishing pad with a window that is transparent for selected wavelengths of light. During polishing, a light beam is directed through the window to the surface of the wafer, where it is reflected and passes through the window in the other direction to arrive at a detector (for example a spectrophotometer). On the basis of the feedback signal, the properties of the substrate surface (e.g. the thickness of the films therein) can be determined for endpoint detection. To facilitate such light-based endpoint detection methods, the chemical mechanical polishing pad provided in the method of the present invention optionally further comprises an endpoint detection window. Preferably, the end-point detection window is chosen from an integrated window incorporated in the polishing layer; and a built-in endpoint detection window block incorporated into the provided chemical mechanical polishing pad. Preferably, the chemical mechanical polishing process of a substrate of the present invention further comprises: providing a polishing machine having a turntable, a rotary head and a rotary conditioner; where the polishing layer is mounted on the turntable; where the substrate is attached to the rotating head; where the turntable is rotated at a plateau speed of 93 rpm; wherein the rotating head is rotated at a top speed of 87 rpm; wherein the substrate is pressed against the polishing surface of the polishing layer with a bearing force of 20685 Pa (3 psi); where the polishing slurry is supplied to the polishing surface at a rate of 200 mL / min. Preferably, the chemical-mechanical polishing process of a substrate of the present invention further comprises: providing a polishing machine having a turntable, a rotary head and a rotary conditioner; where the polishing layer is mounted on the turntable; where the substrate is attached to the rotating head; where the turntable is rotated at a plateau speed of 93 rpm; wherein the rotating head is rotated at a top speed of 87 rpm; wherein the substrate is pressed against the polishing surface of the polishing layer with a bearing force of 20685 Pa (3 psi); where the polishing slurry is supplied to the polishing surface at a flow rate of 200 mL / min; where the rotary conditioner is a diamond abrasive disc; where the polishing surface is abraded by means of the rotary conditioner; wherein the rotary conditioner is pressed against the polishing surface with a conditioner force of 3.18 kg (7 Ibs) perpendicular to the polishing surface. Preferably, the method of producing a polishing layer for a chemical mechanical polishing pad of the present invention comprises: providing (a) a polyfunctional isocyanate having an average of at least two isocyanate groups which have not reacted per molecule (preferably, wherein the isocyanate-terminated urethane prepolymer is an ingredient reaction product comprising: (i) a polyfunctional aliphatic isocyanate and (ii) a prepolymer polyol; wherein the polyfunctional isocyanate provided is an isocyanate-terminated urethane prepolymer having 5.5 to 11.5% by weight (preferably 6 to 11% by weight, more preferably 7 to 10.5% by weight particularly preferably, 7.25 to 10.5% by weight) of unreacted isocyanate groups (NCO); and providing (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the curing agent an amine-initiated polyol type has an average of at least three hydroxyl groups per molecule; combining the polyfunctional isocyanate and the amine-initiated polyol curing agent to form a combination; wherein the stoichiometric ratio of reactive hydrogen groups (i.e., the sum of amine (NH 2) and hydroxyl (OH) groups) in the amine-initiated polyol curing agent to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate in the combination is 1.25 to 1.8 (preferably 1.3 to 1.8, more preferably 1.40 to 1.8; particularly preferably, 1.45 to 1.75); and wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) ) in the combination is chosen to adjust a selectivity by the silicon nitride silicon dioxide removal rates of the polishing layer. Some embodiments of the present invention will now be described in detail in the following examples. Comparative Example C1 and Examples 1-3 [0048] Polishing layers were prepared according to the formulation details provided in Table 2. Specifically, polyurethane cakes were prepared by controlled mixing of the isocyanate-terminated urethane prepolymer. at 51 ° C for Adiprene® LFG963A for Comparative Example C1; and at 65 ° C for Adiprene® LW570 for Examples 1-3; both being available from Chemtura Corporation, with the curing agent shown in Table 2. The MBOCA (4,4'-methylenebis (2-chloroaniline) was maintained at a premix temperature of 116.degree. The ratio of the isocyanate-terminated urethane prepolymer to the curing agent was set such that stoichiometry as defined by the ratio of reactive hydrogen groups (ie that is, the sum of -OH groups and -NH 2 groups) in the unreacted isocyanate-curing agent (NCO) in the isocyanate-terminated urethane prepolymer was as indicated in FIG. Table 2. A porosity was introduced into the polishing layers by adding Expancel® microspheres to the isocyanate-terminated urethane prepolymer prior to its combination with the curing agent to obtain the desired porosity and the desired density for the polishing layers. [0050] The isocyanate-terminated urethane prepolymer with the incorporated Expancel® microspheres and the curing agent were mixed with a high shear mixer head. After leaving the mixing head, the combination was dispensed over a period of 5 minutes in a circular mold with a diameter of 86.4 cm (34 inches) to give a total discharge thickness of approximately 10 cm (4 inches). ). The dispensed combination was allowed to gel for 15 minutes before the mold was placed in a curing oven. The mold was then cured in the curing oven by the following cycle: 30 minutes rise from room temperature to a fixed point of 104 ° C, then hold for 15.5 hours at 104 ° C, then descent for 2 hours from 104 ° C to 21 ° C. The cured polyurethane cakes were then removed from the mold and sliced (cut with a moving blade) at a temperature of 30 to 80 ° C into 2.0 mil (80 mil) thick sheets. Slicing was initiated from the top of each cake. All incomplete sheets have been discarded. The non-grooved polishing layer materials from Comparative Example C1 and Examples 1-3 were analyzed to determine their physical properties as shown in Tables 2 and 3. Note that the density data indicated were determined according to ASTM D1622; that the reported Shore D hardness data were determined according to ASTM D2240; and that the elongation-at-break data reported were determined according to ASTM D412. TABLE 2 TABLE 3 Polishing Experiments [0053] Chemical-mechanical polishing pads were constructed using polishing layers prepared according to Comparative Example C1 and Examples 1-3. The polishing layers were each machined to produce a pattern of grooves in the polishing surface comprising a plurality of concentric circular grooves having pitch dimensions of 1.78 mm (70 mils), width of 0.51 mm. (20 mils) and 0.76 mm (30 mils) deep. The polishing layers were then laminated to a polymer-coated nonwoven subpad layer (Suba IV sub-buffer layers available from Rohm and Haas Electronic Materials CMP Inc.). A polishing slurry comprising 1% by weight silica-type abrasive (available from Fuso Chemical Co., Ltd.), having a positive load measured at the polishing pH noted in Table 4 below, and deionized water was supplied. [0055] A Strasbaugh 6EC wafer polisher was used to polish 200 mm silicon oxide and silicon nitride wafers available from Novellus Systems, Inc. with the specified chemical mechanical polishing pads. The polishing conditions used in all polishing experiments included a plateau speed of 93 rpm; a carrier speed of 87 rpm; with a polishing slurry flow rate of 200 mL / min and a backing force of 20.7 kPa. A Kinik CG181060 diamond conditioning disc (commercially available from Kinik Company) was used to package the chemical mechanical polishing pads. The chemical mechanical polishing pads were each ground with the ex situ conditioner with a pressing force of 3.18 kg (7 Ibs) for 40 minutes. The polishing pads were further conditioned in situ during polishing with a pressing force of 3.18 kg (7 lbs). Shrinkage rates were determined by measuring the film thickness before and after polishing using a KLA-Tencor FX200 metrology tool using a 49-point spiral scan with a 3 mm edge exclusion. The results of the retraction rate experiments are presented in Table 4. TABLE 4
权利要求:
Claims (10) [1" id="c-fr-0001] A method of mechanical-chemical polishing of a substrate characterized in that it comprises: providing the substrate, wherein the substrate comprises a silicon oxide and a silicon nitride; providing a polishing slurry comprising: water; and a silica abrasive, wherein the silica abrasive has a positive surface charge measured at a polishing pH of 1 to 6; providing a chemical mechanical polishing pad comprising: a polishing layer having a composition, a polishing surface and a selectivity by the shrinkage rates between a silicon oxide material and a silicon nitride material, wherein the composition is an ingredient reaction product comprising: (a) a polyfunctional isocyanate having an average of at least two isocyanate groups (NCO) which have not reacted per molecule; (b) an amine initiated polyol curing agent, wherein the amine initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the polyol curing agent initiated by an amine has an average of at least three hydroxyl groups per molecule; and (c) optionally, a plurality of microelements; wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) is chosen to adjust the selectivity by the withdrawal rates; and wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) ) is 1.25 to 1.8; creating a dynamic contact at an interface between the polishing surface and the substrate for polishing a surface of the substrate; distributing the polishing slurry on the chemical mechanical polishing pad at or near the interface between the polishing surface and the substrate; and removing at least a certain amount of the silicon oxide and silicon nitride from the substrate. [2" id="c-fr-0002] 2. Method according to claim 1 characterized in that it further comprises: providing a polishing machine having a turntable, a rotary head and a rotary conditioner; where the polishing layer is mounted on the turntable; where the substrate is attached to the rotating head; where the turntable is rotated at a plateau speed of 93 rpm; wherein the rotating head is rotated at a top speed of 87 rpm; wherein the substrate is pressed against the polishing surface of the polishing layer with a bearing force of 20685 Pa (3 psi); where the polishing slurry is supplied to the polishing surface at a rate of 200 mL / min. [3" id="c-fr-0003] 3. Method according to claim 2 characterized in that the rotary conditioner is a diamond abrasive disk; where the polishing surface is abraded by means of the rotary conditioner; wherein the rotary conditioner is pressed against the polishing surface with a conditioner force of 3.18 kg (7 Ibs) perpendicular to the polishing surface. [4" id="c-fr-0004] A method according to any of the preceding claims characterized in that the composition of the polishing layer provided is the reaction product of ingredients including the amine initiated polyol curing agent; wherein the amine-initiated polyol curing agent contains an average of two nitrogen atoms per molecule and an average of four hydroxyl groups per molecule; and wherein the amine-initiated polyol curing agent has a number average molecular weight, MN, of 200 to 400. [5" id="c-fr-0005] 5. Method according to any one of the preceding claims, characterized in that the composition of the polishing layer provided is the reaction product of ingredients including the plurality of microelements, where the plurality of microelements is selected from the trapped gas bubbles. gas-filled hollow core polymeric materials, liquid-filled hollow core polymeric materials, water-soluble materials, and insoluble phase material. [6" id="c-fr-0006] The method of claim 5 characterized in that the composition of the polishing layer provided is the ingredient reaction product including the plurality of microelements, wherein the plurality of microelements are hollow core polymer materials filled with gas. [7" id="c-fr-0007] 7. Process according to claim 6, characterized in that the composition of the polishing layer supplied contains 10 to 25 vol% of hollow core polymer materials filled with gas. [8" id="c-fr-0008] A method according to any one of the preceding claims characterized in that the provided chemical mechanical polishing pad further comprises: a sub-pad having an upper surface and a lower surface, wherein the upper surface forms an interface with the layer polishing on one side of the polishing layer opposite the polishing surface; and a pressure-sensitive tray adhesive, wherein the pressure-sensitive tray adhesive is disposed on the lower surface of the sub-pad. [9" id="c-fr-0009] 9. A chemical-mechanical polishing pad characterized in that it comprises: a polishing layer having a composition, a polishing surface and a selectivity by the shrinkage speeds between a silicon oxide type material and a nitride type material silicon; wherein the composition is an ingredient reaction product comprising: (a) a polyfunctional isocyanate having an average of at least two isocyanate groups (NCO) which have not reacted per molecule; and (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the initiated polyol curing agent an amine has an average of at least three hydroxyl groups per molecule; wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) is 1.25 to 1.8; and wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) ) is selected to adjust the selectivity by the withdrawal rates. [10" id="c-fr-0010] 10. A process for producing a polishing layer for a chemical mechanical polishing pad characterized in that it comprises: providing (a) a polyfunctional isocyanate having an average of at least two isocyanate groups (NCO) who have not reacted per molecule; and providing (b) an amine-initiated polyol curing agent, wherein the amine-initiated polyol curing agent contains at least one nitrogen atom per molecule and wherein the curing agent an amine-initiated polyol type has an average of at least three hydroxyl groups per molecule; combining the polyfunctional isocyanate and the amine-initiated polyol curing agent to form a combination; wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate in the combination is 1.25 to 1.8; and wherein the stoichiometric ratio of the reactive hydrogen groups in the amine-initiated polyol curing agent of (b) to the at least two isocyanate groups (NCO) which have not reacted in the polyfunctional isocyanate of (a) ) in the combination is chosen to adjust a selectivity by the rates of shrinkage between the silicon dioxide and the silicon nitride of the polishing layer.
类似技术:
公开号 | 公开日 | 专利标题 FR3019076B1|2019-06-14|MECANO-CHEMICAL POLISHING FELT WITH POLISHING LAYER AND WINDOW FR3043001A1|2017-05-05|METHOD FOR MECANO-CHEMICAL POLISHING, CORRESPONDING POLISHING PAD AND METHOD OF PRODUCING THE SAME KR102117902B1|2020-06-02|Soft and conditionable chemical mechanical polishing pad TWI568531B|2017-02-01|Chemical mechanical polishing method FR3022814A1|2016-01-01|FORMULATION OF MECHANICAL CHEMICAL POLISHING LAYER WITH TREATMENT TOLERANCE FR3020296A1|2015-10-30|MECANO-CHEMICAL POLISHING FELT TWI705080B|2020-09-21|Chemical mechanical polishing pad composite polishing layer formulation JP6367611B2|2018-08-01|Multilayer chemical mechanical polishing pad stack with soft and conditioned polishing layer FR3020298A1|2015-10-30|MECHANICAL CHEMICAL POLISHING FELT WITH TRANSPARENT LIMIT POINT DETECTION WINDOW US9064806B1|2015-06-23|Soft and conditionable chemical mechanical polishing pad with window TWI574793B|2017-03-21|Soft and conditionable chemical mechanical polishing pad stack US10875144B2|2020-12-29|Chemical mechanical polishing pad FR3037836A1|2016-12-30| TWI590919B|2017-07-11|Soft and conditionable chemical mechanical polishing pad with window and method of polishing substrate FR3037834A1|2016-12-30| FR3037837A1|2016-12-30|
同族专利:
公开号 | 公开日 JP2017139443A|2017-08-10| TW201715016A|2017-05-01| US9484212B1|2016-11-01| DE102016012533A1|2017-05-04| JP6849389B2|2021-03-24| CN106625031A|2017-05-10| KR20170054266A|2017-05-17|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 MY114512A|1992-08-19|2002-11-30|Rodel Inc|Polymeric substrate with polymeric microelements| JP3925041B2|2000-05-31|2007-06-06|Jsr株式会社|Polishing pad composition and polishing pad using the same| US6649523B2|2000-09-29|2003-11-18|Nutool, Inc.|Method and system to provide material removal and planarization employing a reactive pad| JP3826702B2|2000-10-24|2006-09-27|Jsr株式会社|Polishing pad composition and polishing pad using the same| CN100592474C|2001-11-13|2010-02-24|东洋橡胶工业株式会社|Grinding pad and method of producing the same| JP4039214B2|2002-11-05|2008-01-30|Jsr株式会社|Polishing pad| US7704125B2|2003-03-24|2010-04-27|Nexplanar Corporation|Customized polishing pads for CMP and methods of fabrication and use thereof| US20040224622A1|2003-04-15|2004-11-11|Jsr Corporation|Polishing pad and production method thereof| JP4475404B2|2004-10-14|2010-06-09|Jsr株式会社|Polishing pad| US7731864B2|2005-06-29|2010-06-08|Intel Corporation|Slurry for chemical mechanical polishing of aluminum| CN101704309B|2005-07-15|2014-12-03|东洋橡胶工业株式会社|Laminated sheet and manufacturing method thereof| US20070037491A1|2005-08-12|2007-02-15|Yuzhuo Li|Chemically modified chemical mechanical polishing pad, process of making a modified chemical mechanical polishing pad and method of chemical mechanical polishing| US7445847B2|2006-05-25|2008-11-04|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad| US7294576B1|2006-06-29|2007-11-13|Cabot Microelectronics Corporation|Tunable selectivity slurries in CMP applications| KR101181885B1|2006-09-08|2012-09-11|도요 고무 고교 가부시키가이샤|Polishing pad| US7438636B2|2006-12-21|2008-10-21|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad| MY157714A|2007-01-15|2016-07-15|Rohm & Haas Elect Mat|Polishing pad and a method for manufacturing the same| US7569268B2|2007-01-29|2009-08-04|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad| US7828634B2|2007-08-16|2010-11-09|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Interconnected-multi-element-lattice polishing pad| US20090062414A1|2007-08-28|2009-03-05|David Picheng Huang|System and method for producing damping polyurethane CMP pads| US8052507B2|2007-11-20|2011-11-08|Praxair Technology, Inc.|Damping polyurethane CMP pads with microfillers| JP4593643B2|2008-03-12|2010-12-08|東洋ゴム工業株式会社|Polishing pad| US8557005B2|2008-04-25|2013-10-15|Toyo Polymer Co., Ltd.|Polyurethane foam and polishing pad| US7820005B2|2008-07-18|2010-10-26|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Multilayer chemical mechanical polishing pad manufacturing process| JP5393434B2|2008-12-26|2014-01-22|東洋ゴム工業株式会社|Polishing pad and manufacturing method thereof| US8119529B2|2009-04-29|2012-02-21|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Method for chemical mechanical polishing a substrate| US8257544B2|2009-06-10|2012-09-04|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad having a low defect integral window| US8551201B2|2009-08-07|2013-10-08|Praxair S.T. Technology, Inc.|Polyurethane composition for CMP pads and method of manufacturing same| WO2011048889A1|2009-10-22|2011-04-28|日立化成工業株式会社|Polishing agent, concentrated one-pack type polishing agent, two-pack type polishing agent and method for polishing substrate| US8431490B2|2010-03-31|2013-04-30|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Method of chemical mechanical polishing a substrate with polishing composition adapted to enhance silicon oxide removal| US9156124B2|2010-07-08|2015-10-13|Nexplanar Corporation|Soft polishing pad for polishing a semiconductor substrate| CN102601723B|2011-01-20|2014-03-12|中芯国际集成电路制造有限公司|Grinding method for semi-conductor device| JP5789634B2|2012-05-14|2015-10-07|株式会社荏原製作所|Polishing pad for polishing a workpiece, chemical mechanical polishing apparatus, and method for polishing a workpiece using the chemical mechanical polishing apparatus| US9144880B2|2012-11-01|2015-09-29|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Soft and conditionable chemical mechanical polishing pad| US9238295B2|2013-05-31|2016-01-19|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Soft and conditionable chemical mechanical window polishing pad| US9238296B2|2013-05-31|2016-01-19|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Multilayer chemical mechanical polishing pad stack with soft and conditionable polishing layer| US9233451B2|2013-05-31|2016-01-12|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Soft and conditionable chemical mechanical polishing pad stack| US9102034B2|2013-08-30|2015-08-11|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Method of chemical mechanical polishing a substrate| US8980749B1|2013-10-24|2015-03-17|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Method for chemical mechanical polishing silicon wafers| US9127187B1|2014-03-24|2015-09-08|Cabot Microelectronics Corporation|Mixed abrasive tungsten CMP composition| US9064806B1|2014-03-28|2015-06-23|Rohm and Haas Electronics Materials CMP Holdings, Inc.|Soft and conditionable chemical mechanical polishing pad with window| US9216489B2|2014-03-28|2015-12-22|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad with endpoint detection window| US9259820B2|2014-03-28|2016-02-16|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad with polishing layer and window| US20150306731A1|2014-04-25|2015-10-29|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad| US9314897B2|2014-04-29|2016-04-19|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad with endpoint detection window| US9333620B2|2014-04-29|2016-05-10|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad with clear endpoint detection window| US9259821B2|2014-06-25|2016-02-16|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing layer formulation with conditioning tolerance| US20150375361A1|2014-06-25|2015-12-31|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing method| US9481070B2|2014-12-19|2016-11-01|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|High-stability polyurethane polishing pad|US20180169827A1|2016-12-16|2018-06-21|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Methods for making chemical mechanical planarizationpolishing pads having integral windows| CN106891246B|2017-03-30|2019-05-07|湖北鼎龙控股股份有限公司|It is a kind of for semiconductor, the chemical mechanical polishing pads of optical material and magnetic material surface planarisation| JP2019050307A|2017-09-11|2019-03-28|株式会社フジミインコーポレーテッド|Polishing method, and composition for polishing and method for manufacturing the same| US10464187B2|2017-12-01|2019-11-05|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|High removal rate chemical mechanical polishing pads from amine initiated polyol containing curatives| US10569384B1|2018-11-06|2020-02-25|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad and polishing method| US10464188B1|2018-11-06|2019-11-05|Rohm And Haas Electronic Materials Cmp Holdings, Inc.|Chemical mechanical polishing pad and polishing method|
法律状态:
2017-09-18| PLFP| Fee payment|Year of fee payment: 2 | 2018-09-13| PLFP| Fee payment|Year of fee payment: 3 | 2020-05-01| RX| Complete rejection|Effective date: 20200324 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US14/927,704|US9484212B1|2015-10-30|2015-10-30|Chemical mechanical polishing method| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|